Hierarchical classification for speech-to-speech translation

نویسندگان

  • Emil Ettelaie
  • Panayiotis G. Georgiou
  • Shrikanth S. Narayanan
چکیده

Concept classifiers have been used in speech to speech translation systems. Their effectiveness, however, depends on the size of the domain that they cover. The main bottleneck in expanding the classifier domain is the degradation in accuracy as the number of classes increase. Here we introduce a hierarchical classification process that aims to scale up the domain without compromising the accuracy. We propose to exploit the categorical associations that naturally appear in the training data to split the domain into sub-domains with fewer classes. We use two methods of language model based classification and topic modeling with latent Dirichlet allocation to use the discourse information for sub-domain detection. The classification task is performed in two steps. First the best category for the discourse is detected using one of the above methods. Then a sub-domain classifier—limited to that category—is deployed. Empirical results from our experiments show higher accuracy for the proposed method compared to a single layered classifier.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Gender and Age Classification in Speech Signals

Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...

متن کامل

The Effect of Private Speech and Self-Regulation on Translation Quality among Iranian Translation Students: A Mixed-Methods Study

The current study presents findings from a mixed-methods study of investigating the self-regulatory role of private speech (self-talk) on students’ translation quality. The aim of the study was to validate the adapted version of a self-verbalization questionnaire. The construct validity and reliability of the scale were supported by the CFA which revealed that all items reached the acceptable f...

متن کامل

Classification of emotional speech using spectral pattern features

Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...

متن کامل

P65: Speech Recognition Based on Bbrain Signals by the Quantum Support Vector Machine for Inflammatory Patient ALS

People communicate with each other by exchanging verbal and visual expressions. However, paralyzed patients with various neurological diseases such as amyotrophic lateral sclerosis and cerebral ischemia have difficulties in daily communications because they cannot control their body voluntarily. In this context, brain-computer interface (BCI) has been studied as a tool of communication for thes...

متن کامل

Phoneme Classification Using Temporal Tracking of Speech Clusters in Spectro-temporal Domain

This article presents a new feature extraction technique based on the temporal tracking of clusters in spectro-temporal features space. In the proposed method, auditory cortical outputs were clustered. The attributes of speech clusters were extracted as secondary features. However, the shape and position of speech clusters change during the time. The clusters temporally tracked and temporal tra...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010